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Self-consistent quantal treatment of decay rates within the perturbed static path approximation

C. Rummel* and H. Hofmann†

Physik-Department der TU Mu¨nchen, D-85747 Garching, Germany
~Received 7 August 2001; published 26 November 2001!

The framework of the perturbed static path approximation is used to calculate the partition function of a
finite Fermi system from a Hamiltonian with a separable two body interaction. Therein, the collective degree
of freedom is introduced in self-consistent fashion through a Hubbard-Stratonovich transformation. In this way,
all transport coefficients that dominate the decay of a metastable system are defined and calculated microscopi-
cally. Otherwise the same formalism is applied as in the Caldeira-Leggett model to deduce the decay rate from
the free energy above the so called crossover temperatureT0.
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I. INTRODUCTION

Commonly quantum versions of the decay rate of dam
metastable systems are treated on the basis of the Cald
Leggett model@1#. For an exhaustive overview on this top
we may refer to the review papers by Ha¨nggi et al. @2#, In-
gold @3#, or Weiss @4#. Unfortunately, this model assume
some simplified coupling to a linear heat bath. Furthermo
it does not make any predictions about the input of su
important quantities as the potential energy and the ine
which need to be chosen on an entire phenomenolog
level. These features do not allow the model to be applie
self-bound Fermi systems. There, one would like to see
collective variables introduced in some self-consistent fa
ion, with a microscopic treatment ofall transport coefficients
alike.

One possible attempt to overcome these deficiencie
formulated in Ref.@5# ~with references to earlier papers! in
connection to nuclear physics. It is based on a quantal tr
port equation that is derived within a locally harmonic a
proximation exploiting linear response theory. It is this a
proximation that allows one to treat a more complica
coupling between the collective variable and the intrin
degrees of freedom. A transport equation necessarily
scribes evolution in real time. Therefore, in barrier regio
quantum effects can be accounted for only above a crit
temperatureTc , which is larger than the so called crossov
temperatureT0, which one encounters for imaginary tim
propagation@6#. As one knows, the same feature holds tr
also for the Caldeira-Leggett model@7,8#. Another disadvan-
tage of the derivation of this transport equation mentione
that it bases on the deformed shell model. Surely, it allo
one to calculate all transport coefficients on the same fo
ing. But as one does not start from a genuine two bo
interaction, self-consistency is handled on a se
microscopic level only.

It is the aim of the present paper to do first steps to ov
come these deficiencies. This is possible by adapting a
viously developed formalism to evaluate the partition fun
tion for bound systems with separable two body interactio
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One starts from the so called static path approximation~SPA!
functional integrals as an approximation to the classical
high-temperature limit@9–11#. Then small scale fluctuation
around this static path are treated to second order, such
quantum effects come in through local random-phase
proximation ~RPA!. In the literature this is referred to a
RPA-SPA @12#, the perturbed static path approximatio
~PSPA! in Ref. @13# ~the name that we are taking over! or
correlated static path approximation~CSPA! in Ref. @14#.

II. PARTITION FUNCTION OF A FINITE FERMI SYSTEM

Finally, we are interested in generalizing the formulas
dissipative tunneling to a system where the collective
grees of freedom are introduced self-consistently. The s
plest Hamiltonian that may serve this purpose is of the f
lowing structure:

Ĥ5Ĥ01
k

2
F̂F̂, ~1!

with ~Hermitian! one body operatorsĤ0 andF̂. The product
F̂F̂ mimics an effective separable two body interaction. F
isoscalar modes, the case we have in mind predomina
the coupling constantk is negative@15#. As we shall see later
F̂ describes one collective degree of freedom. The ansatz~1!
should be considered to define a microscopic model, for
this collective mode we want to address to Ref.@15#. Ne-
glecting spin and isospin degrees of freedom, a general
body interaction may be written as a sum of separable te

Ĥ5Ĥ01
1

2 (
i

ki F̂ i F̂ i . ~2!

For instance, one might exploit an expansion into multip
operators. In case the latter are not Hermitian the prod
must be replaced byF̂ i

†F̂ i ~see, e.g., Sec. 4.4.7 of Ref.@16#!.

A. The general form of the partition function

The partition function of the grand canonical ensem
reads

Z~b!5Tr exp@2b~Ĥ2mÂ!#5Tr Û, ~3!
©2001 The American Physical Society26-1
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C. RUMMEL AND H. HOFMANN PHYSICAL REVIEW E 64 066126
whereb51/T is the inverse temperature andĤ is the Hamil-
tonian ~1!. The chemical potentialm is needed in order to
keep the particle number^Â& fixed on average. It would be
more appropriate to work with truly fixed particle numbe
But as we are mainly interested in the dependence of tr
port properties on excitation energy or temperature in
paper, this simplification should be accepted. An exact ev
ation of ~3! is prohibited by the presence of the two bo
interaction. Treating the latter in mean field approximati
facilitates the calculation greatly. A convenient technical to
to incorporate this approximation is to use functional in
grals ~in imaginary time propagation! @17#, with which fluc-
tuations about the mean field may be treated as well.
elegant form of handling this problem is given through t
Hubbard-Stratonovich transformation@18#, by which the col-
lective variableq(t) is introduced. To keep the present e
position as short as possible we save ourselves from rep
ing the derivations of@9–14# but simply state the basi
results that will then serve as the starting point for our g
eralizations. Mind, however, that the notation has be
adapted to that used in transport theory@19#.

After introducing the Fourier expansion of the collecti
variable

q~t!5q01(
rÞ0

qr exp~ in rt!, ~4!

where the so called Matsubara frequencies

n r5
2p

\b
r[

2p

\
rT with r 561, 62, 63¯ ~5!

~in units with kB51) have been used, the partition functio
may be written in the following form within the PSPA†see
Eq. ~21! of @13#‡:

Z~b!5A b

22pkE2`

1`

dq0 e[b/2k]q0
2
z~b,q0!C~b,q0!.

~6!

Herek,0 and

z~b,q0!5Tr exp$2b@ ĥ0~q0!2mÂ#%

5)
l

„11exp$2b@e l~q0!2m#%…, ~7!

is the grand canonical partition function belonging to t
static part of the Hamiltonian in mean field approximation

ĥ0~q0!5Ĥ01F̂q0 , ~8!

which is simply a sum over one body operators. The co
sponding one body Schro¨dinger equation at some givenq0
reads

ĥ0~q0!u l ~q0!&5e l~q0!u l ~q0!&. ~9!

The appearance of theq0 reflects the static version of th
self-consistency relation for the mean field
06612
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q5k^F̂&, ~10!

which relates the collective variableq to the expectation
value of the operatorF̂. The exponent in the first factor o
the integrand of Eq.~6! is easily understood as to represe
the static part of the correction2k^F̂&2/2, which the energy

^ĥ0& in the independent particle picture gets from the tw
body interaction. Neglecting the factorC one obtains the par
tition function in SPA@9–11#

ZSPA~b!5A b

22pkE2`

1`

dq0 e[b/2k]q0
2
z~b,q0!

[A b

22pkE2`

1`

dq0 exp@2bFSPA~b,q0!#.

~11!

In the second line of Eq.~11! the symbolFSPA(b,q0) has
been introduced to represent the free energy. It is not the
of the total system~or total nucleus! which would be given
by the relation

Z~b!5exp@2bF~b!#, ~12!

when the partition function is identified asZ(b)5ZSPA(b).
Rather, theFSPA(b,q0) represents the free energy of the sy
tem of nucleons whose mean field is kept fixed at theq0. In
a common language of transport theory one would call it
free energy of the intrinsic degrees of freedom.

So far, any contribution from the dynamics in the colle
tive variableq(t) has been neglected. Formally this may
accounted for by writing the correction factor as the follo
ing path integral@13#:

C~b,q0!5E D8q expS b

k (
r .0

uqr u21 ln^Ûq&q0D , ~13!

with the measure

D8q5 lim

N«5\b
N→`

)
r 51

(N21)/2
b

2pk
d Re~qr !d Im~qr !. ~14!

In Eq. ~13! there appears the thermal expectation value of
evolution operatorÛq , which can be expressed by the fo
lowing ~imaginary! time-ordered product:

^Ûq&q0
5

1

z~b,q0!
TrS exp@2bĥ0~q0!#

3T̂expF2
1

\E0

\b

dt ĥ1~t,qr !G D . ~15!

The Hamiltonian

ĥ1~t,qr !5F̂~t!dq~t!, ~16!
6-2
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SELF-CONSISTENT QUANTAL TREATMENT OF DECAY . . . PHYSICAL REVIEW E64 066126
may be understood as the time dependent correction to
static mean field given in Eq.~8!. Here, the time dependenc
of the operator part is defined as

F̂~t!5eĥ0(q0)t/\F̂ e2ĥ0(q0)t/\, ~17!

which means through the interaction picture based on
Hamiltonianĥ0(q0) of Eq. ~8! and thus depends on the sta
q0. The fluctuation of the collective variabledq(t)5q(t)
2q0 in Eq. ~16! is related to the fluctuating mean fie
through Eq.~10!. It may be noted that thet dependence o
thec numberq is meant to be the correct one, not that of a
interaction picture.

The partition function~6! may finally be written in the
following compact form:

Z~b!5A b

22pkE2`

1`

dq0 exp@2bF~b,q0!#, ~18!

if again one uses the concept of the ‘‘intrinsic free energ
which now is given by

F~b,q0!52
1

2k
q0

22
1

b
ln z~b,q0!2

1

b
ln C~b,q0!.

~19!

B. The perturbed static path approximation „PSPA…

We are now going to evaluate the general formula~13!
within the so called PSPA. It is defined as that approximat
in which the exponent appearing in Eq.~15! is expanded to
second order in theqr . This leads to the common Gaussia
approximation that is known to be related to the sem
classical limit. Following Ref.@13# one may write

ln^Ûq&q0

PSPA5
1

2\2 (
r ,sÞ0

qrqsE
0

\b

dtE
0

\b

ds

3einrteinss^T̂F̂~t!F̂~s!&q0
, ~20!

with thet dependence of the operators as defined in Eq.~17!.
Likewise, according to Eq.~15!, the expectation value is to
be calculated with the density operator corresponding to
same unperturbed Hamiltonianĥ0(q0). It is this feature that
will allow us to introduce and work with response function
As we shall see below, this is of advantage for at least
reasons, which in a sense are related to each other. The
result, say for the decay rate of metastable states, has m
in common with the linear response formulation of transp
theory within a locally harmonic approximation@5#. From
this approach one knows how the response functions hav
be modified in order to introduce dissipation.

1. Exploiting Green and response functions

The time ordered average in Eq.~20! can be identified
with the two body Matsubara function of the one body o
eratorF̂ @20#,
06612
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G̃~q0 ,t2s!52
1

\
^T̂F̂~t!F̂~s!&q0

. ~21!

On the other hand the retardedFF-response function is
given by

x̃R~q0 ,t2s!5
i

\
u~ t2s!^F̂~ t !F̂†~s!2F̂†~s!F̂~ t !&q0

5x̃~q0 ,t2s!. ~22!

~Henceforth, we shall omit the upper index ‘‘R’’ !. It de-
scribes the response of the expectation value^F̂& to the
variations ofq in real time evolution

^F̂&q0
~ t !52E

2`

`

dsx~q0 ,t2s!@q~s!2q0#. ~23!

The spectral representationsG(q0 ,in r) of Eq. ~21! and
x(q0 ,v) of Eq. ~22! are obtained by Fourier series and Fo
rier transformations, respectively. As both have the sa
spectral density, one may prove@20# them to be connected b
the analytic continuationin r↔v1 i e:

G~q0 ,in r !↔2xR~q0 ,v!. ~24!

The response function may be continued to the whole co
plex plane via Ref.@5#

X~q0 ,z!5E
2`

` dV

p

x9~q0 ,V!

V2z
for Im zÞ0, ~25!

with x9(q0 ,v) being the imaginary~dissipative! part of
x(q0 ,v). The form~25! defines two branches. The one th
is analytic in the upper half plane coincides with the retard
function xR(q0 ,z) and the one analytic in the lower ha
plane defines the advanced functionxA(q0 ,z). Both
branches may be continued analytically into the other h
planes. Below we will make use only of the retarded
sponsexR(q0 ,z)[x(q0 ,z). On the imaginary axis (z5 iw
with wPR) it has the following symmetry properties:

@x~q0 ,iw !#* 5x@q0 ,~ iw !* #5x~q0 ,2 iw !5x~q0 ,iw !.
~26!

This property, together with the relations~21! and ~24! may
be exploited to calculate thet integrals in Eq.~20! as

ln^Ûq&q0

PSPA5b(
r .0

uqr u2x~q0 ,in r !. ~27!

Mind that because of the reality of the collective variable o
hasqr* 5q2r . The result~27! may be plugged into Eq.~13!
to arrive at the following form:

C PSPA~b,q0!5E D8q expS b

k (
r .0

@11kx~q0 ,in r !#uqr u2D .

~28!
6-3
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C. RUMMEL AND H. HOFMANN PHYSICAL REVIEW E 64 066126
The remaining integrals hidden inD8q are of Gaussian type
As we stick to the casek,0, they cause no problem as lon
as

11kx~q0 ,in r !.0 for r .0. ~29!

As we shall see soon, this leads to a condition on the t
perature below which the PSPA breaks down, as already
ticed in Refs.@12,13#. Here, this condition only has bee
rewritten in terms of the response functions used in the lin
response approach to nuclear transport~see, e.g.,@5#!. In this
language the final result forC PSPA reads

C PSPA~b,q0!5)
r .0

@11kx~q0 ,in r !#
21, ~30!

and that for the partition function of the PSPA becomes

ZPSPA~b!5A b

22pkE2`

1`

dq0

3exp@2bF SPA~b,q0!#C PSPA~b,q0!

5A b

22pkE2`

1`

dq0 e[b/2k]q0
2
z~b,q0!

3)
r .0

@11kx~q0 ,in r !#
21. ~31!

2. Response functions in the independent particle model

Before we discuss further the condition~29! in the next
section, let us recall how the response function looks in
model of independent particles, as defined by the Ham
tonianĥ0 of Eq. ~8!. It is not difficult to convince oneself o
the following form for the dissipative part of th
FF-response function

x9~q0 ,v!52
p

\ (
l ,k

uFlk~q0!u2nlk~q0!d@v2e lk~q0!/\#,

~32!

where

Flk~q0!5^ l ~q0!uF̂uk~q0!&,

e lk~q0!5e l~q0!2ek~q0!, ~33!

nlk~q0!5n@e l~q0!#2n@ek~q0!#,

andn(e) being the Fermi occupation numbers

n~e!5
1

11exp@b~e2m!#
. ~34!

Within this model it can easily be seen, that thex(q0 ,z) is
given by

x~q0 ,z!52
1

\ (
l ,k

uFlk~q0!u2
nlk~q0!

e lk~q0!/\2z
. ~35!
06612
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Notice, please, that along the real axis thez must be chosen
identical tov1 i e. For details about these response functio
we may refer to Ref.@5#.

3. The crossover temperature

Let us elaborate now on the convergence condition~29!
for theqr integrals in Eq.~28!, finally to establish connection
to an analogous condition that shows up while treating d
sipative tunneling at finite temperature within the Caldei
Leggett model@21,22#. To this end, the following identity is
useful @13#:

11kx~q0 ,in r !5

)
n

@n r
21vn

2~q0!#

)
k. l

8 $n r
21@e lk~q0!/\#2%

, ~36!

which is valid for all rÞ0. The frequenciesvn(q0) appear-
ing here are those of the local RPA associated to the lo
vibrations of the mean field aroundq0. They satisfy a secula
equation@13#, which can easily be brought to the form

11kx~q0 ,z!50, ~37!

by analytically continuing the functionG(q0 ,in r) to complex
z by way of Eqs.~24! and ~25!. As the denominator of the
ratio on the right of Eq.~36! is real and positive the condition
~29! can be reformulated as

)
n

@n r
21vn

2~q0!#.0, ~38!

as already mentioned in Refs.@12,13#. In case that all local
RPA modes are stable, and hence that allvn(q0) are real, the
condition is fulfilled for any temperature, viz forT>T0[0
@mind Eq.~5!#. For unstable RPA modes, on the other hand
one pair of corresponding frequenciesvn

inst(q0) becomes
purely imaginary, in which case Eq.~38! can be fulfilled only
above a certain minimal temperatureT0(q0). The latter may
vary with q0, but it is possible, of course, to define a minim
global temperatureT0 by

T05max
\uvn

inst~q0!u
2p

, ~39!

such that Eq.~29! is fulfilled for all T.T0. This temperature
is identical @23# to the so called ‘‘crossover temperature
~here, of course, for an undamped system! that shows up in
the Caldeira-Leggett model when dealing with unsta
modes of dissipative quantum systems@22#. There, the no-
tion ‘‘crossover’’ indicates a transition in the nature of th
decay of a metastable system. AboveT0 the process is domi-
nated by thermally activated decay~‘‘thermal hopping’’!
with the effects of genuine barrier penetration in the quant
sense to become dominant only below thisT0 ~called ‘‘dis-
sipative tunneling’’ for damped quantum systems!. Evidently,
in a typical situation, theT0 of Eq. ~39! would correspond to
that q0 where the top of the barrier is located.
6-4
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III. THE PSPA FOR DISSIPATIVE PHENOMENA

To elaborate on the connection to the treatment of di
pative tunneling within the Caldeira-Leggett model we ne
to introduce dissipation. As mentioned previously, the m
natural way is through the response function. This can b
be seen at the secular equation~37!. For realz5v5v* , for
which the response function splits into its real~reactive! and
imaginary ~dissipative! part, x(v)5x8(v)1 ix9(v), one
gets

11kx8~v!50,

x9~v!50. ~40!

Whenever the functionx9(v) is given by a discrete sum ofd
functions located ate lk(q0)/\, as shown in Eq.~32!, the
second equation is automatically fulfilled at the solutionsvn

of the first equation. These solutions are either real or pu
imaginary without any sign of dissipation, reflecting the fa
that the local RPA as discussed above corresponds to
reversible dynamics. This argument shows that irreversib
is intimately related to the functional form of the dissipati
part x9(v) of the response function. A genuinely micro
scopic approach would require to consider explicitly co
plings of the simple particle-hole configurations to mo
complicated states@17#. Definitely, this is beyond the scop
of the functional integral method underlying the prese
model. In a more phenomenological approach one might
gue to dress the single particle states with complex s
energies that itself may vary with temperature, for details
Ref. @5# or Ref. @24#, where the inclusion of pairing is dis
cussed. An even simpler way is to effectively perform t
transition to a continuous spectrum, which directly cor
sponds to the procedure one employs in the Caldeira-Leg
model in typical solid state applications@1–4,22#. However,
even for a finite nucleus such a transition is justified for n
too small excitations. Indeed, as one knows from nucl
reaction theory@25#, for not too small energies resonances
overlap, implying that the true compound states lie dense
excitations above about 10–20 MeV. On the level of t
independent particle model one simply might employ ene
averages, which in turn are related to finite observation tim
of the system; for details the reader may refer to Ref.@5#.

In this paper we would not like to penetrate any furth
into this discussion. Rather, in the sequel we would like
assume thex9(v) to be a continuous function ofv. In this
case the secular equation~37! may no longer be written as in
Eq. ~40! and its solutions become complex quantities. To
specific, instead of Eq.~32! we like to suggest and work with
the following model function consisting of two Lorentzian
of width G(q0):

x9~q0 ,v!5F2~q0!S G~q0!/2

@v2E~q0!#21@G~q0!/2#2

2~E↔2E!D . ~41!
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It may be characterized as a generalization of the degene
model often used in nuclear physics~see, e.g., Ref.@15#! to
one where the nucleonic states are spread over a certai
gion determined by the widthG(q0). The strength of these
intrinsic excitations is parametrized by the quantityF2(q0).
A straightforward generalization could be seen in a summ
tion of more than one term. In a sense the reduced form~41!
corresponds to what has been called the ‘‘one pole appr
mation’’ ~see, e.g., Ref.@5#!. It is valid whenever the strength
distribution is dominated by one peak, which then fina
implies to have one prevailing collective mode. The para
eters appearing in Eq.~41! could be calculated in variou
ways, as indicated within the linear response approach,
instance, but even the random matrix model~RMM! might
be used~see, e.g., Ref.@5#!.

Inserting the spectral density~41! into Eq. ~25! the full
response function can be calculated, which is needed b
for the secular equation~37! as well as for the condition~29!.
The integral can be carried out with the help of the resid
theorem noticing that the integrand has five poles altoget
situated atV5z and V56E(q0)6 iG(q0)/2, and closing
the loop in the appropriate half plane. The final result for t
retarded response function reads

x~q0 ,z!5F2~q0!
E~q0!

E~q0!21@G~q0!/2#22 iG~q0!z2z2
.

~42!

~The advanced response function would be obtained
changing2 i into 1 i .) For the condition~29! one needs to
know this function along the positive imaginary axis. The
the denominator is always positive implying thatx(q0 ,iw)
is finite for realw. Furthermore, it is seen thatx(q0 ,iw) still
is real for continuous spectra.

A. Transport coefficients of collective motion

We are now going to write the secular equation for c
lective motion in terms of transport coefficients, as it
known for the damped oscillator. This is achieved best
rewriting Eq.~42! in the form of the oscillator response func
tion

x~q0 ,z!5
21

M ~q0!

1

z21 iG~q0!z2V2~q0!
[xosc~q0 ,z!.

~43!

The parameters introduced here correspond to thenucleonic
~or ‘‘intrinsic’’ ! motion at any value ofq0 and areuniquely
derived from Eq.~42! as follows:

M ~q0!52
1

2

]2x21~q0 ,z!

]z2 Uz505
1

E~q0!F2~q0!
, ~44!

M ~q0!V2~q0!5x21~q0 ,z50! 5
E~q0!21@G~q0!/2#2

E~q0!F2~q0!
,

~45!
6-5
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M ~q0!G~q0!5 i
]x21~q0 ,z!

]z Uz50 5
G~q0!

E~q0!F2~q0!
.

~46!

These transport coefficients may be interpreted as the~local!
coefficients of inertia, frequency, and friction for the nuc
onic mode. Plugging Eq.~43! into Eq. ~37! one obtains

0511k x~q0 ,z!5
z21 iG~q0!z2V2~q0!2k/M ~q0!

z21 iG~q0!z2V2~q0!
.

~47!

This equation may be fulfilled only for a vanishing numer
tor, which leads to the secular equation for the local frequ
ciesz6(q0) of collective motion, namely,

~z6!21 iG~q0!z62Ã2~q0!50, ~48!

with the localcollectivefrequency being defined as

Ã2~q0!5V2~q0!1k/M ~q0!,V2~q0!. ~49!

The last inequality is given because we are dealing with
scalar modes wherek,0. Notice that the collective fre
quencyÃ may become purely imaginary, whereas the intr
sic oneV is always real@see Eq.~45!#.

Now the frequenciesz6(q0) are no longer real quantities
A convenient form is seen to be

z6~q0!5uÃ~q0!u@6AsgnÃ2~q0!2h2~q0!2 ih~q0!#,
~50!

with

h~q0!5
G~q0!

2uÃ~q0!u
. ~51!

The dimensionless parameterh(q0) measures the degree o
damping: It is smaller~larger! than 1 if the~local! collective
motion is underdamped~overdamped!. In the stable case
Ã2(q0).0 the frequenciesz6(q0) of Eq. ~50! are found in
the lower complex half plane symmetrically to the imagina
axis for h(q0),1 and on the negative imaginary axis f
h(q0).1. In the unstable caseÃ2(q0),0 they always lie
on the imaginary axis, but now the frequencyz1(q0) is in
the upper half plane.

It may be worthwhile to briefly compare Eq.~47! with the
undamped case. It is easily recognized that for vanishinG
the form ~47! turns into Eq.~37! under the following condi-
tions: ~a! Eq. ~36! is evaluated atz instead ofin r , ~b! simply
one ~pair of! local collective mode~s! Ã(q0) is considered
instead of all local RPA modesvn(q0), ~c! the intrinsic fre-
quenciese lk(q0)/\ are replaced byV(q0).

B. The crossover temperature for damped motion

There is no change in the condition~29! for convergence
of the integrals in Eq.~28!. It is only that Eq.~29! takes on a
different form in terms of the transport coefficients. Mor
06612
-
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over, thex(q0 ,in r) may be expressed by the transport co
ficients by making use of Eq.~47!. In this way Eq.~29! turns
into

n r
21G~q0!n r1Ã2~q0!.0, ~52!

as a natural generalization of Eq.~38!. Still, for a real col-
lective frequency this condition is always fulfilled. For
purely imaginary one, on the other hand, Eq.~52! can be
fulfilled only if the n r is larger than

n r
15uÃ~q0!u@2h~q0!1Ah2~q0!2sgnÃ2~q0!#. ~53!

Hence,T has to be larger than the local crossover tempe
ture

T0~q0!5
\uÃ~q0!u

2p
@A11h2~q0!2h~q0!#. ~54!

Evidently, theT0(q0) is decreasing with growing dampin
strengthh(q0). For h(q0)@1 one hasT0(q0);1/2h(q0).
The global crossover temperature, finally, has to be defi
as

T05maxT0~q0!. ~55!

For vanishing damping we recover Eq.~39! with Ã(q0) be-
ing identical tovn(q0).

IV. THE FISSION RATE WITHIN THE PSPA

Imagine that we are given a heavy nucleus that may de
by fission, a process that is to be understood as collec
motion across a barrier. It is known that at smaller tempe
tures this barrier may have substructure due to shell effe
Such details shall be neglected here. Rather we shall ass
the process to be dominated by just one potential minim
and one pronounced barrier. Likewise, we shall discard
evaporation of light particles andg ’s. Moreover, the transfer
of energy from the collective degree of freedom to the nuc
onic ones will be supposed not to change much the latt
temperature. Under such circumstances the previously
cussed path integral formulation may be applied, with a fix
temperature. As noted earlier, for the PSPA we expect g
similarities to processes that are described on the basis o
Caldeira-Leggett Hamiltonian.

There, the decay rateR of unstable systems at not to
small temperatures is traced back to the imaginary part of
free energy. As can be seen in the literature, see, e.g.,@4#, @3#:
or @2#, for T.T0 the following formula is in wide use:

R52
2

\

T0

T
Im F~b!. ~56!

It has originally been postulated in Refs.@26,27# and, in strict
sense, still lacks a general proof from first principles. Ho
ever, it can be said that it is capable of reproducing corre
certain limits. For instance, one recovers correctly Krame
high-temperature limit, and in the quantum limit one gets
same functional form as obtained with real-time path in
grals @7# or in a quantum transport theory@6#.
6-6
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To evaluate the imaginary part of the free energy one
uses the relationF(b)52T ln Z(b) to the partition function.
For an unstable system the latter attains an~exponentially
small! imaginary part. Following Langer@26# this may be
shown by applying the saddle point approximation and d
torting the integration contour into the complex plane at
barrier. Expanding the logarithm to first order in the exp
nentially small quantity ImZ(b)/ReZ(b) the imaginary part
of the free energy becomes

Im F~b!'2T
Im Z~b!

ReZ~b!
. ~57!

Plugging Eq.~57! into Eq. ~56! we obtain

R5
2T0

\

Im Z~b!

ReZ~b!
. ~58!

The partition functions appearing here may be evalua
within the PSPA extending formula~31! to a dissipative sys-
tem as outlined in Sec. III. Applying the saddle point a
proximation to theq0 integral in Eq.~31! we obtain

ZPSPA~b!uqa
5

1

A2k CF~qa!

3exp@2bF SPA~b,qa!#CPSPA~b,qa!,

~59!

as the contribution from the minimum and the purely ima
nary expression

ZPSPA~b!uqb
5

i

2A2k uCF~qb!u

3exp@2bF SPA~b,qb!#CPSPA~b,qb!,

~60!

as the contribution from the barrier. Here, the stiffnesses

]2F SPA~b,q0!/]q0
25CF ~q0!, ~61!

of the SPA free energy at fixed temperature appear, as it
assumed that the integrand is dominated by the expone
and that the correction factorC PSPA(b,q0) varies smoothly
with q0. The stationary points are thus defined by this fr
energy through]F SPA/]q050. Evaluating the intrinsic free
energy in SPA from Eq.~19! with C[1 it is easy to convince
oneself that the extremal points fulfill the relation

qa/b5k^F̂&qa/b
. ~62!

The derivatives of the eigenvaluese l(q0) with respect toq0
needed here may be obtained from time-independent pe
bation theory. In Eq.~62! the indicesa and b stand for the
minimum and the maximum~or barrier! of F SPA(q0), re-
spectively. The relations~62! are nothing else but the sel
consistency condition~10! applied to the two stationary
points of the system. Whereas Eq.~59! was obtained through
06612
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the common Gaussian integrals of the saddle point appr
mation, for Eq.~60! the integration contour had to be de
formed such that it runs parallel to the positive imagina
axis. This is the reason for the additional factor 2 in t
denominator of Eq.~60!, see Refs.@26–28#.

The generalization of the PSPA correction factor~30! to
damped quantum systems may be performed by repla
the response function~35! of the independent particle mode
by its continuous version~42!. Furthermore, we may mak
use of the transport coefficients introduced in Sec. III A.
this way one gets

CPSPA~b,q0!5)
r .0

n r
21G~q0!n r1V2~q0!

n r
21G~q0!n r1Ã2~q0!

. ~63!

As mentioned earlier, in comparison to Eq.~36! there is only
one ~pair of! mode~s!. The relation between the local nucle
onic frequencyV(q0) and the local collective frequenc
Ã(q0) is given by Eq.~49!. It is worth stressing that the
infinite product~63! is convergent. To guarantee this impo
tant feature, it suffices to have the same coefficients for lo
inertia and damping in the numerator and the denomina
@29#.

Plugging Eqs.~54!, ~59!, and~60! into Eq.~58! we obtain
the following expression for the PSPA decay rate of the s
tem under consideration:

RPSPA5
uÃbu
2p

~A11hb
22hb!

3A CF ~qa!

uCF ~qb!u
exp@2bF SPA~b,qb!#

exp@2bF SPA~b,qa!#

3
CPSPA~b,qb!

CPSPA~b,qa!
. ~64!

Like in the sequel we have partly used indices ‘‘b’’ instead of
an argumentqb to keep our notation short. The two firs
factors, which in a sense represent dynamics, have com
through the crossover temperatureT0(q0) discussed in Sec
III B, mind Eq. ~54! in particular. Like in the Caldeira-
Leggett model the decay rate factorizes into a classical
Rclass

PSPA and a quantum correction factorf qm
PSPA,

RPSPA5Rclass
PSPA3 f qm

PSPA, ~65!

with

Rclass
PSPA5

uÃbu
2p

A CF ~qa!

uCF ~qb!u
exp@2bF SPA~b,qb!#

exp@2bF SPA~b,qa!#

3~A11hb
22hb!, ~66!

and

f qm
PSPA5

CPSPA~b,qb!

CPSPA~b,qa!
, ~67!

respectively.
6-7
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Let us discuss first the factorRclass
PSPAthat survives the classica

limit, as no\ is involved. Evidently, it contains the commo
Arrhenius factor

exp~2bEb!5exp$2b@F SPA~b,qb!2F SPA~b,qa!#%,
~68!

defined here by the differenceEb of the free energy betwee
barrier and potential minimum. The influence of damping
given by the correction factor found first by Kramers@30#,
namely,

f K5A11hb
22hb . ~69!

It decreases monotonically with increasinghb and for hb
@1 behaves like 1/2hb . The remaining factor can be mad
to become proportional to the attempt frequencyÃa at the
minimum by writing

uÃbu
2p

A CF ~qa!

uCF ~qb!u
5

Ãa

2p
AMa

Mb
AuCcoll~qb!u

Ccoll~qa!
A CF ~qa!

uCF ~qb!u
.

~70!

Here, use has been made of the relation between the
quency and inertia of the local mode and the associated s
ness,

Ccoll~q0!5M ~q0!Ã2~q0!. ~71!

Putting all factors together the classical rate may be writ
as

Rclass
PSPA5RKf class

PSPA. ~72!

It contains Kramers’ original form

RK5
Ãa

2p
e2bEb~A11hb

22hb!, ~73!

as the first factor. In addition there is a another correct
factor

f class
PSPA5AMa

Mb
AuCcoll~qb!u

Ccoll~qa!
A CF ~qa!

uCF ~qb!u
, ~74!

not present in the derivations based on the Caldeira-Leg
model. The reasons for that are obvious. First of all, in t
model the inertia in the collective mode is simply put equ
to a constant that renders the first factor on the right of
~74! equal to unity. Second, the dynamical stiffness~71! is
forced to be identical to the one of the phenomenologica
introduced collective potential,]2V(q)/]q2 in Refs.@1,3,4#.
This is achieved by working with a Hamiltonian in whic
from the beginning the collective part is renormalized by
term x(0)q2/2, which in the linear response approach is
duced by the static influence of the coupling. In this w
only the dynamical part of the induced force appears, wh
in the end may lead to Ohmic friction. In our approac
whereall transport propertiesof the collective dynamics are
generated from the two body interaction, such manipulati
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are not meaningful. In certain limits it is possible, howev
to simplify the f class

PSPAof Eq. ~74!. For slow collective motion,
sometimes referred to as the zero frequency limit, the lo
stiffness~71! of collective motion may be shown to be rep
resented by that of the free energy~61! ~see, e.g., Ref.@5#!
such that one simply has

f class
PSPA'AMa

Mb
. ~75!

For a derivation of this factor based on a generalized vers
of Kramers’ equation and picture of the decay we like
refer to Eq.@31#.

Next, we turn to thequantum correctionsto the classical
rate~66!, which in this approach is given by the ratio of th
PSPA correctionsCPSPA(b,q0) of Eq. ~63! evaluated at the
barrier and the minimum. With the help of the local nucl
onic and collective frequenciesV(q0) andÃ(q0) it writes

f qm
PSPA5)

r .0

n r
21Gbn r1Vb

2

n r
21Gbn r1Ãb

2
:)
r .0

n r
21Gan r1Va

n r
21Gan r1Ãa

2
. ~76!

The nice feature about this structure is that it converges
all conceivable values of the transport coefficients as long
T.T0. The reason simply is that it is the ratio of two co
vergent products of type~63!. As the alert reader may gues
a simple generalization of the quantum correction factor
the Caldeira-Leggett model~see, e.g., Refs.@3,4#! to
coordinate-dependent coefficients such as

f qm
LC→)

r .0

n r
21Gan r1Ãa

2

n r
21Gbn r1Ãb

2
~77!

~see, e.g.,@32#! may ~for Ohmic damping whereG does not
fall off for large frequencies! lead to problems of conver
gence. Indeed, forGaÞGb the infinite product either con
verges to zero or diverges depending which one of theG ’s is
larger@29#. In Ref. @6# the form~77! has been derived on th
basis of a quantum transport equation. In Ref.@33# this factor
has been evaluated for microscopically calculated trans
coefficients. To circumvent the convergence problem in
~77! the individualG ’s had been replaced by the arithmet
mean value 2Ḡ5Ga1Gb .

The local frequency of the collective motionÃ is real at
the minimum and purely imaginary at the barrier, where
the frequency of the nucleonic motionV is real everywhere.
The denominator of the first term in Eq.~76! vanishes asT
approachesT0, corresponding to the definition of the cros
over temperature in Sec. III B@see Eq.~52!#, but all other
factors are strictly positive. For this reason, atT0 the quan-
tum correction factorf qm

PSPAdiverges to plus infinity, a feature
well known from the Caldeira-Leggett model@22#.

In the limit of very high temperaturesT@\V, where\V
represents the typical nucleonic excitation,f qm

PSPAstrictly con-
verges to unity. For nuclear fission, collective motion is e
pected to be slow in the sense@31# of having
6-8
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1 MeV'\Ã!\V'
41 MeV

A1/3
'6 MeV. ~78!

One may expect quantum effects in collective motion to d
appear already forT@\Ã. Indeed, the quantum correctio
factor will be close to unity already forT/\V5O(1). At
least this can be shown for the two factors of Eq.~76!. Di-
vide all numerators and denominators byn r

2 and neglect
(Ã/n r)

2!1 in the resulting denominators. This is justifie
simply because the conditionT/\V'O(1) implies V/n r
'1/(2pr ) @mind Eq.~5!#. Remain the terms which involve
G/n r . They can be neglected ifT@(1/2p)\G or T/\Ã
@h/p. Microscopic computations of the transport coef
cients show this condition to be fulfilled, althoughh itself
increases withT; see Fig. 3 of@31# or Fig. 5.2.10 of Ref.@5#.

V. CONCLUSION

We have been able to demonstrate how the PSPA ca
extended to treat the decay of damped metastable system
this first step a simple schematic two body interaction
been taken and the nucleonic excitations have been assu
to be concentrated in one Lorentzian peak around a ce
mean value. Generalizations to more general systems sh
not cause too many problems. So far we have concentr
on the quantum corrections to thermal hopping that t
place above the critical temperatureT0 @6,22#. At this tem-
perature the common semi-classical treatment of functio
ys

ys
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integrals breaks down, simply because for unstable mo
the Gaussian integrals diverge for smaller temperatures
far, this latter feature also limited the applications of t
PSPA to bound systems@11–13#. There is hope that this de
ficiency can be overcome in very much the same way a
was possible for dissipative tunneling@22,34#. Work in this
direction is under way@35#.

There are several advantages of the method prese
here, both over the usual approach to dissipative tunne
within the Cladeira-Leggett model@3,4#, as well as with re-
spect to the locally harmonic approximation~LHA ! @5# to
quantum transport. Different from the Caldeira-Legg
model, all transport properties derive from the two body
teraction of the many body system. No phenomenolog
assumptions have to be made for any transport coeffici
The effects of the two body interaction are treated on a fu
self-consistent level, largely because the collective variab
can be introduced globally by way of the Hubbar
Stratonovich transformation. For the LHA, on the oth
hand, and on a quantum level this is possible only locally@5#.
This method, however, is more flexible with respect to t
thermal properties. There, one need not rely on the con
of a fixed temperature, an assumption that is questionable
isolated systems.
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